ILC 2005

LISP 1n an Electronic Design
application

Engineering Numbers

* Engineers use numbers like 1k — meaning
1000, or 3.3u meaning 3.3¢-6.

— Lisp doesn’t know about these numbers:

— (* 1k 3.3v)
Error: Attempt to take the value of the unbound variable "1k'.
[condition type: unbound-variable]

Engineering Numbers

e In Common LISP it 1s not clear how to have LISP read
these numbers (it may not be possible within the spec.)

* In Franz Allegro LISP we can wrap the reader functions and check for
a symbol that is actually intended to be a number:

. (* 1k 3.3u) => 3.3M

Refer to the file “real-eng.lisp” if you would like the details

Engineering Numbers

* We can define a new format directive to print these kinds

of numbers

+ (format t "~u ~s" (* 1230.0 3.5¢-4) (* 1230.0 3.5¢-4))
430.5m 0.4305

e (formatt"~u~u" -20db 3%)
100.0m 30.0m

Refer to the file “formatu.lisp’ if you would like the details

Logarithmic Iteration

* Many engineering tasks require analysis the log domain.

We can add a new iteration path to loop:

* (loop for 1 being log from 1k to 10k dec 5 collect (format nil "~4u" 1))
("IK" "1.585K" "2.512K" "3.981K" "6.31K" "10.0K")

Refer to the file “log-loop-path.lisp” if you would like the details

Modeling Digital Hardware

Verilog and VHDL — special purpose languages - are used
to model hardware — so why use LISP?

=> [ts faster and more flexible

— Less time 1n the whole process from “I have a new idea to try” to
“I have 1t running on a chip”

— => It’s faster in LISP because advanced test and verification
functions can be abstracted and they are generic.

Modeling a XA modulator

This 1s what > ~
: Carry output
engineers call a < o
15t order Sigma-Delta 7! adder — this
Is a single
Modulator (ZA) — wire: O or 1/

it’s easy to
understand — it 1s an
adder that overflows:

N
Finite width Delay element
digital adder (‘state’ in the

LISP code)

Modeling a XA modulator

 This 1s the LISP code:

(defun sdl (&key (bits 8))

— It builds a function to (let ((state 0)
represent the modulator (max (ash 1 bits)))
. : #* (lambda (x)
VVh“jl%treuumns (if (when (>= (incf state x) max)
— ‘state’ is the lamba (decf state max))
bound state variable 1

-1
— It returns two values, 1)

and -1

> A modulators can solve equations

e A XA modulator can solve @

differential equations... ’ ’\®+ o
— the rate of occurrence of 7-1 N
overflow from the first A 1s N (

proportional to X, therefore the N
rate of increase of Y is also

proportional to X. dy / dt = X

Example system with XA modulators

e ..and so can be made to @

model complex systems: < >®+ 7-1
d*y/dt* =-y Ly 52

— This one will create a

quadrature oscillator — a
sine and cosine wave Z! @4 1 *é{N*_‘
N [ER
N

Example system with XA modulators

This 1s the LISP (defun oscl (&key (bits 8))
(let ((sin-sd (sdl :bits bits))
code for that (cos-sd (sdl :bits bits))
(max (ash 1 bits))
system. (cos (ash 1 bits))
— Note it returns the (sin (ash 1 (1- bits))))
) #*(lambda O
function to model (psetq
the systen1 cos (max 0 (nin max (- cos (funcall sin-sd sin))))

sin (max 0 (min max (+ sin (funcall cos-sd cos)))))
(values sin cos))))

d’y/dt*> =—y

Example system with XA modulators

(IOO-p i\::fecaneasilytest ;EE/\ (\ (\ (\ ﬂ ﬂ {\ (\ (\ ﬂ ﬂ ﬂ

repeat 10k
with osc = (oscl)
collect (funcall osc) into y

finally (plot y))
. \/ \/ \/ \/ \/ \/ \} \} \} \} \} \}
0.0L i i . i i i . i |
0 1K, 2K 3. 4K B, EK. 7K. aK 3K, 10K,

Real example: Audio digital filter

(defun Filter (&key (bits 12)) No approximations or simplifications —
let ((input-d dl :bits bit .
e optback_dn codl -bite bited) this is a complete first order filter*

(half-full-scale (ash 1 (1- bits)))
(state (ash 1 (1- bits))))
(labels ((de-normalize (x) (round (+ half-full-scale (* x half-full-scale))))
(normalize (x) (/ (- x half-full-scale) half-full-scale))
(filter (i) (normalize
(incf state
(- (funcall input-dm (de-normalize 1))
(funcall feedback-dm state))))))
filter)))

*This class of filter is physically smaller that the conventional IIR or FIR filters and is “patent pending”” by ESS.
Refer to USPTO Publication number 20040193665 for more details

Example of a Generic Test Function

(plot-frequency-response-from-quadrature-time-domain

"filter
:fstart 10
:fstop 10k 10
ain -10db
:foperate 10me
:run-time 100m)
20
* This, rather long named

function, can test the time
domain description and create -
the frequency domain result

Phaze = DBAmMp =—

20

40

70 100

200

400

700 1K

2K

4K

7K 10K

.40

-850

There are more details explaining how this function actually works in the presentation notes

Multi-tone Generic Test Function

(run-a-system #"filter

tain -20db FSFET[Blkm]Ftrdltem 1]]
:fclk 10me -2l
:ftest " (200 10k) -40
:f-dec 10) &

-80

This function drives the .

system with orthogonal 10
multi-tones and plots the .4
FFT of the result 60

100 300 1K ¥ 10K, 0K, 100K, 00K,

Briet overview of the Plotter

The plotter
plots many
forms of data.

It is based on a
Presentation
and Gesture
system similar
to CLIM

It has many
data analysis
functions

File Edit Wew Math Miscelaneous ‘Window Contours Documentation

Cloze — Yolume ——

@DE%T%TEEDDmIE}ﬁE
(] | B B vz |] | 2| B)
Sinuzoid] — Sinugoidd —
Sinuzoid3 SinusoidZ ——
1
200
E00mw
400wy
200wy
Walue I
~200rw
-4 00y
-E00r
-B00ny
-1

TV WA

F20

16

12

F2.0

F4.0

0 10 20 30 40 &0 6O 70 8O 40
Iteration

LiEdt M) R

2003 4ug 2003Dec 2004 Apr 2004 Aug 2004 Dec

GYPart nil (3 nil, R nil, C nil) 0

El

AME

Dynamic Dialog Boxes
« Windows Dialog boxes are created

at run tlme Color and Choice
Coor [HEENEEE" N mn
(let ((a red)

(b :fred) f* Fred 1 Me " Harry 1 Maude

(c "Hello"™) _

d 22)) String and Mumber
(in-dialog-box (:name "DDB Example" :direction :v =ting | Hello

sprompt-width "Number for D') Mumber for D [2 :ij
(dialog-column (:name "Color and Choice') -

(dsetf a "color)
(dsetf b "alist :choices
"(C'Fred" . :fred) ("'Me"™. :me) :charry :maude)))
(dialog-column (:name "'String and Number')
(dsetf c "string :direction :h)
(dsetf d "integer :range "(0 100) (More examples are given in the presentation notes)

: "Number for D" . 2 : :
prompt “Number Tor 0%)))) Refer to “dynamic-dialog.lisp” if you would like the details

Cancel | 034

Presentations and Gestures

e The Plotter and all other UI tools
are based on presentations and
gestures — similar to CLIM:

(with-output-as-presentation
(s :type "my-circle :object "My Blue Circle')
(with-foreground-color (s *circle-color¥®)
(Fill-circle s (make-position ..) ..)))))

(define-gesture :go-blue :buttons :left :chord "(:shift))
(define-presentation-gf -go-blue ((p my-circle) ..)

(setf *circle-color* blue)
(invalidate (on-stream region)))

2 Example

1]

Executing Menu

a-color= yellow)
{on-stream region})})}

ate (@ .
ion b d)
ift))
on b d)
Iy Blue Circle
Go Blue Shift+Mouseleft
G0 Green Mousel eft
Go Red MouselLeft
G0 Yellow i
Inspect Chrl+Mousefiddle
Say Hello MaouseLeft

Cancel

Refer to “presentations.lisp, gestures.lisp and select.lisp” if you would like the details

Saving and Distributing Objects

« Objects need to be saved in a file:

— ASCII “print” format is
convenient and, by indexing
objects, relatively easy to
implement

— But it is not efficient to save large
data sets (such as simulation
results) in this format

;5> A typical dump file begins something like this:
(1 def notes (2 list (3 list (4 list (5 "Spice
Simulations') (6 "Trans')

(7 "'Debug') (8 "Sweep™)) \. (9 "tran 1n 100n™)) (10
list (11 list (6) (6) (M) \.

(12 "_.save all(v) all(i)'™)) (13 list (14 list (15
"Spice Simulations™) (16 "AC'™)

(7)) (17 *"Sweep')) \. (18 *fac dec 100 10 10g'™)) (19
list (20 list (15) (16) (7)) \.

(21 "_.save all(v) all(i)™)) (22 list (23 list (24
"Spice Simulations™) (25 'DC'™)

(7)) (26 "OP'™)) \. (27 "op')) (28 list (29 list (24)
(25) (7)) \. (30 "_save all(v) all(i)™)))

name (31 "V-Source'™) blobs (32 list (33 wire-blob x
1344 y 1332 blobs.....

Saving and Distributing Objects

° It is more efﬁcient (Smaller ﬁles) 550 A dump_file begins sometf_ﬁng like this:
(2 plot-object contours (3 list (4 2d-contour name (5
faster) to define two reader list (6 "Sinusoid0™))
creation-time 3325952101 color #S(rgb :-red 0 :green O
macros: :blue 128) single-key

t x-data (7 list-data-item data (8 :data #LOO{XXXXXXXX
— #{ reads a binary format list ----)

— #[read a binary format array

#n{ causes the
following n file bytes
to be read as binary
double float values and
creates a list of them

Refer to “dump-form.lisp™ if you would like the details.

Distributing Associated Files

« Commonly an “object” — for example a * When the dumped object is read, possibly
schematic drawing — has other information at a different site, the embedded file is
in other files. (The library files provided recreated in the appropriate logical
by the manufacturer for example). pathname at that new site.
* A new type of “pathname” called a “data- sas(1): #F"MySchemtics:fred.txt”
file” behaves in all respects like a regular izs“égfh‘ég‘;gﬁ;‘;ge%“t
pathname, except when the object that has #F"MySchemtics:fred.txt" is an instance of #<standard-
., class data-file>:
a reference to it is dumped toa ﬁle, the The following slots have :instance allocation:
contents of that file are also dumped. logical-pathname "l_/l)I/Schemtics:fred_txt"
ni

object-file-pathname
offset-in-object-Ffile
S . length-in-object-file
There are more details in the presentation notes file-cache
Refer to “dump-form.lisp” if you would like to see the code. file-cache-complete

nil
nil
nil
nil

Controlling Other MSWindows Apps.

* Assuming we don’t want to use DDE
(perhaps it 1s not available in the remote
application) and no other documented
API is known, we can always control
the remote application as though from
the keyboard.

» This is the code for #’advance-ppt:

There are many more details in the presentation notes.

(defun advance-ppt
(&optional (name "Microsoft PowerPoint'))
(let ((ppw (caar (find-window-in-tree
name name
:substring-ok t)))
(this
(development-main-window *system*)))
(unwind-protect
(progn
(setf (topmost this) t)
(win:SetForegroundWindow ppw)
(do-keypress ppw vk-pagedown))
(setf (topmost this) nil)
(set-foreground-window this)))
(values))

Refer to ““zombie.lisp™ if you would like to see a complete example of controlling the keyboard of one computer from a second computer.

Complete Example
« ESS Technology makes Digital ' “““““““ e ‘ s

tﬁ% addelaytc Schematics wark, adll

Media Chips: DTV, DVD, VCD |-t =

Audio parts etc.

EINERY vioise | Spice | Lvs | 7\

« These designs have significant

analog content: ADC, DAC, SSCG m\‘mml I:

.
circuits etc. | A —_@
 All these circuits are designed in |~ i
ESS’s design center in Kelowna, |~ WW“L il I:
Canada using this LISP based tool. === |
: 4 ooni

L™ R [primitives: Logic; i sch

Schematic Editor

The Schematic Editor is a
standalone executable: no
knowledge of LISP is need to run it
— 1n fact there 1s no evidence of it
being written in LISP to the user.

It 1s a competitive and feature rich
production quality tool — one of
many such tools from many
vendors used to design chips.

§ Schematic (Alpha 15.6)
File Edi Spice L¥S

Schamahcsl Pr\mmves| Hlaravchyl prncassl MewSchermatic] I I

| example R

=1ojx]

[Design hotes

Dac Imager3Tx 21| [sc azc 100 30 s0x —
3 op-point Imager. 3T noise viout) V1 DEC 100 30 50k 10 W/ .SF”DE(E: Simulations
£2 delay-cell Schematics:ddll 12;‘3‘322??:;:) o AE
B delay-geel Schematics: adll e e » Debug
£ replica Imager:3TX (st schi:tset] I:' I
E% driver Imager document iinoiset all L aLSE, _
£ ntimg Imager. docurment
4754 noise | mager. document] ERUENS =
E% noisex Imager document - AVeo 4 " "
&3 ssoc SChEmatcs:27Megss »| .
Simulate EEECE Spice I LvS I M2 M3 M4
1u F:’c 3000 B I'220n 300n i Fqy
Name Total Toverf id rd ‘; 2
inoise_t v | 102.8u 0.0 0.0 o0 | Ve M?
m16 102.0u 102.0u | 1.757u | B0.44p -
mi 12.4u 8.845u | 8.687u [13.99p 1u . ?‘2] 300n It
m10 1.933u 1.93u [114.8n | 1837p i £
md BB5.1n B80.5n | 79.02n | 1.062p
n 107 0n 0o oo oo c2
m13 56.72n 56.72n | 5.882p | 20.3p
m2 19.28n 3.367n | 18.95n | 72.32p
mé 12.11n 1.465n | 12.02n | 204.4p AGnd
220n | f800n 220n | §800n
mis 5389 [5.389n | 34890 407 | || Reter [E> -
m1 4.335n 1.081n | 4.198n | 21.27p ijoo MBl
600 Toon | 500
FFa ki
4 i ot 2t
Run | Excel noise viout) ¥in DEC 100 2
LM R Imager:document;naise sch b =2

Summary

LISP has proved useful and productive as an aid to developing electronic circuits
More than 20 new (patented or patent pending) circuit have been developed

It does not seem to be reasonable to expect any new hires to know LISP — it seems to
work best when LISP based tools can be used with no LISP knowledge, then, when the
user asks for more, one can begin to expose more of the code and eventually users
become used to LISP and its syntax.

Most of the contents of this presentation are available for download.

Martin Mallinson
ILC June 2005

	ILC 2005
	Engineering Numbers
	Engineering Numbers
	Engineering Numbers
	Logarithmic Iteration
	Modeling Digital Hardware
	Modeling a ΣΔ modulator
	Modeling a ΣΔ modulator
	ΣΔ modulators can solve equations
	Example system with ΣΔ modulators
	Example system with ΣΔ modulators
	Example system with ΣΔ modulators
	Real example: Audio digital filter
	Example of a Generic Test Function
	Multi-tone Generic Test Function
	Brief overview of the Plotter
	Dynamic Dialog Boxes
	Presentations and Gestures
	Saving and Distributing Objects
	Saving and Distributing Objects
	Distributing Associated Files
	Controlling Other MSWindows Apps.
	Complete Example: Schematic Editor
	Schematic Editor
	Summary

