
ILC 2005

LISP in an Electronic Design
application

Engineering Numbers
• Engineers use numbers like 1k – meaning

1000, or 3.3u meaning 3.3e-6.
– Lisp doesn’t know about these numbers:
– (* 1k 3.3u)

Error: Attempt to take the value of the unbound variable `1k'.
[condition type: unbound-variable]

Engineering Numbers
• In Common LISP it is not clear how to have LISP read

these numbers (it may not be possible within the spec.)
• In Franz Allegro LISP we can wrap the reader functions and check for

a symbol that is actually intended to be a number:
• (* 1k 3.3u) => 3.3M

Refer to the file “real-eng.lisp” if you would like the details

Engineering Numbers
• We can define a new format directive to print these kinds

of numbers
• (format t "~u ~s" (* 1230.0 3.5e-4) (* 1230.0 3.5e-4))

430.5m 0.4305
• (format t "~u ~u" -20db 3%)

100.0m 30.0m

Refer to the file “formatu.lisp” if you would like the details

Logarithmic Iteration
• Many engineering tasks require analysis the log domain.

We can add a new iteration path to loop:
• (loop for i being log from 1k to 10k dec 5 collect (format nil "~4u" i))

("1K" "1.585K" "2.512K" "3.981K" "6.31K" "10.0K")

Refer to the file “log-loop-path.lisp” if you would like the details

Modeling Digital Hardware
• Verilog and VHDL – special purpose languages - are used

to model hardware – so why use LISP?
• => Its faster and more flexible

– Less time in the whole process from “I have a new idea to try” to
“I have it running on a chip”

– => It’s faster in LISP because advanced test and verification
functions can be abstracted and they are generic.

Modeling a Σ∆ modulator
• This is what

engineers call a
1st order Sigma-Delta
Modulator (Σ∆) –
it’s easy to
understand – it is an
adder that overflows:

+ Z-1

N

N

N

Finite width
digital adder

Delay element
(‘state’ in the
LISP code)

Carry output
from the

adder – this
is a single
wire: 0 or 1

Input
number

Modeling a Σ∆ modulator
• This is the LISP code:

– It builds a function to
represent the modulator
which it returns

– ‘state’ is the lamba
bound state variable

– It returns two values, 1
and -1

(defun sd1 (&key (bits 8))
(let ((state 0)

(max (ash 1 bits)))
#'(lambda (x)

(if (when (>= (incf state x) max)
(decf state max))

1
-1))))

Σ∆ modulators can solve equations
• A Σ∆ modulator can solve

differential equations…
– the rate of occurrence of

overflow from the first Σ∆ is
proportional to X, therefore the
rate of increase of Y is also
proportional to X.

+ Z-1
N

N + Z-1
N

N
N

X

Y

xdtdy =/

Example system with Σ∆ modulators
• ..and so can be made to

model complex systems:

– This one will create a
quadrature oscillator – a
sine and cosine wave

+ Z-1
N

N + Z-1
N

N
N

X

Y

-Z-1
N

N+Z-1
N

N
N

ydtyd −=22 /

Example system with Σ∆ modulators
• This is the LISP

code for that
system.
– Note it returns the

function to model
the system

(defun osc1 (&key (bits 8))
(let ((sin-sd (sd1 :bits bits))

(cos-sd (sd1 :bits bits))
(max (ash 1 bits))
(cos (ash 1 bits))
(sin (ash 1 (1- bits))))

#'(lambda ()
(psetq

cos (max 0 (min max (- cos (funcall sin-sd sin))))
sin (max 0 (min max (+ sin (funcall cos-sd cos)))))

(values sin cos))))

ydtyd −=22 /

Example system with Σ∆ modulators
• We can easily test

it:
(loop

repeat 10k
with osc = (osc1)
collect (funcall osc) into y
finally (plot y))

Real example: Audio digital filter
(defun filter (&key (bits 12))

(let ((input-dm (sd1 :bits bits))
(feedback-dm (sd1 :bits bits))
(half-full-scale (ash 1 (1- bits)))
(state (ash 1 (1- bits))))

(labels ((de-normalize (x) (round (+ half-full-scale (* x half-full-scale))))
(normalize (x) (/ (- x half-full-scale) half-full-scale))
(filter (i) (normalize

(incf state
(- (funcall input-dm (de-normalize i))

(funcall feedback-dm state))))))
#'filter)))

No approximations or simplifications –
this is a complete first order filter*

*This class of filter is physically smaller that the conventional IIR or FIR filters and is “patent pending” by ESS.
Refer to USPTO Publication number 20040193665 for more details

Example of a Generic Test Function

• This, rather long named
function, can test the time
domain description and create
the frequency domain result

(plot-frequency-response-from-quadrature-time-domain
#'filter
:fstart 10
:fstop 10k
:ain -10db
:foperate 10me
:run-time 100m)

There are more details explaining how this function actually works in the presentation notes

Multi-tone Generic Test Function
(run-a-system #'filter

:ain -20db
:fclk 10me
:ftest '(200 10k)
:f-dec 10)

• This function drives the
system with orthogonal
multi-tones and plots the
FFT of the result

Brief overview of the Plotter
• The plotter

plots many
forms of data.

• It is based on a
Presentation
and Gesture
system similar
to CLIM

• It has many
data analysis
functions

Dynamic Dialog Boxes
• Windows Dialog boxes are created

at run time:
(let ((a red)

(b :fred)
(c "Hello")
(d 22))

(in-dialog-box (:name "DDB Example" :direction :v
:prompt-width "Number for D")

(dialog-column (:name "Color and Choice")
(dsetf a 'color)
(dsetf b 'alist :choices
'(("Fred" . :fred) ("Me". :me) :harry :maude)))

(dialog-column (:name "String and Number")
(dsetf c 'string :direction :h)
(dsetf d 'integer :range '(0 100)

:prompt "Number for D"))))
(More examples are given in the presentation notes)

Refer to “dynamic-dialog.lisp” if you would like the details

Presentations and Gestures
• The Plotter and all other UI tools

are based on presentations and
gestures – similar to CLIM:

(with-output-as-presentation
(s :type 'my-circle :object "My Blue Circle")

(with-foreground-color (s *circle-color*)
(fill-circle s (make-position ..) ..)))))

(define-gesture :go-blue :buttons :left :chord '(:shift))

(define-presentation-gf :go-blue ((p my-circle) ..)
(setf *circle-color* blue)
(invalidate (on-stream region)))

Refer to “presentations.lisp, gestures.lisp and select.lisp” if you would like the details

Saving and Distributing Objects
• Objects need to be saved in a file:

– ASCII “print” format is
convenient and, by indexing
objects, relatively easy to
implement

– But it is not efficient to save large
data sets (such as simulation
results) in this format

;;; A typical dump file begins something like this:
(1 def notes (2 list (3 list (4 list (5 "Spice
Simulations") (6 "Trans")
(7 "Debug") (8 "Sweep")) \. (9 "tran 1n 100n")) (10
list (11 list (5) (6) (7)) \.
(12 ".save all(v) all(i)")) (13 list (14 list (15
"Spice Simulations") (16 "AC")
(7) (17 "Sweep")) \. (18 "ac dec 100 10 10g")) (19
list (20 list (15) (16) (7)) \.
(21 ".save all(v) all(i)")) (22 list (23 list (24
"Spice Simulations") (25 "DC")
(7) (26 "OP")) \. (27 "op")) (28 list (29 list (24)
(25) (7)) \. (30 ".save all(v) all(i)")))
name (31 "V-Source") blobs (32 list (33 wire-blob x
1344 y 1332 blobs.....

Saving and Distributing Objects
• It is more efficient (smaller files,

faster) to define two reader
macros:
– #{ reads a binary format list
– #[read a binary format array

;;; A dump file begins something like this:
(2 plot-object contours (3 list (4 2d-contour name (5
list (6 "Sinusoid0"))
creation-time 3325952101 color #S(rgb :red 0 :green 0
:blue 128) single-key
t x-data (7 list-data-item data (8 :data #100{xxxxxxxx
....)))))

#n{ causes the
following n file bytes
to be read as binary

double float values and
creates a list of them

Refer to “dump-form.lisp” if you would like the details.

Distributing Associated Files
• Commonly an “object” – for example a

schematic drawing – has other information
in other files. (The library files provided
by the manufacturer for example).

• A new type of “pathname” called a “data-
file” behaves in all respects like a regular
pathname, except when the object that has
a reference to it is dumped to a file, the
contents of that file are also dumped.

There are more details in the presentation notes
Refer to “dump-form.lisp” if you would like to see the code.

• When the dumped object is read, possibly
at a different site, the embedded file is
recreated in the appropriate logical
pathname at that new site.

sas(1): #F"MySchemtics:fred.txt"
#F"MySchemtics:fred.txt"
sas(2): (describe *)
#F"MySchemtics:fred.txt" is an instance of #<standard-
class data-file>:
The following slots have :instance allocation:
logical-pathname "MySchemtics:fred.txt"
object-file-pathname nil
offset-in-object-file nil
length-in-object-file nil
file-cache nil
file-cache-complete nil

Controlling Other MSWindows Apps.
• Assuming we don’t want to use DDE

(perhaps it is not available in the remote
application) and no other documented
API is known, we can always control
the remote application as though from
the keyboard.

• This is the code for #’advance-ppt:

There are many more details in the presentation notes.
Refer to “zombie.lisp” if you would like to see a complete example of controlling the keyboard of one computer from a second computer.

(defun advance-ppt
(&optional (name "Microsoft PowerPoint"))

(let ((ppw (caar (find-window-in-tree
:name name
:substring-ok t)))

(this
(development-main-window *system*)))

(unwind-protect
(progn

(setf (topmost this) t)
(win:SetForegroundWindow ppw)
(do-keypress ppw vk-pagedown))

(setf (topmost this) nil)
(set-foreground-window this)))

(values))

Complete Example: Schematic Editor
• ESS Technology makes Digital

Media Chips: DTV, DVD, VCD
Audio parts etc.

• These designs have significant
analog content: ADC, DAC, SSCG
circuits etc.

• All these circuits are designed in
ESS’s design center in Kelowna,
Canada using this LISP based tool.

Schematic Editor
• The Schematic Editor is a

standalone executable: no
knowledge of LISP is need to run it
– in fact there is no evidence of it
being written in LISP to the user.

• It is a competitive and feature rich
production quality tool – one of
many such tools from many
vendors used to design chips.

Summary
• LISP has proved useful and productive as an aid to developing electronic circuits
• More than 20 new (patented or patent pending) circuit have been developed
• It does not seem to be reasonable to expect any new hires to know LISP – it seems to

work best when LISP based tools can be used with no LISP knowledge, then, when the
user asks for more, one can begin to expose more of the code and eventually users
become used to LISP and its syntax.

• Most of the contents of this presentation are available for download.

Martin Mallinson
ILC June 2005

	ILC 2005
	Engineering Numbers
	Engineering Numbers
	Engineering Numbers
	Logarithmic Iteration
	Modeling Digital Hardware
	Modeling a ΣΔ modulator
	Modeling a ΣΔ modulator
	ΣΔ modulators can solve equations
	Example system with ΣΔ modulators
	Example system with ΣΔ modulators
	Example system with ΣΔ modulators
	Real example: Audio digital filter
	Example of a Generic Test Function
	Multi-tone Generic Test Function
	Brief overview of the Plotter
	Dynamic Dialog Boxes
	Presentations and Gestures
	Saving and Distributing Objects
	Saving and Distributing Objects
	Distributing Associated Files
	Controlling Other MSWindows Apps.
	Complete Example: Schematic Editor
	Schematic Editor
	Summary

