Implementing S-Expression Based
Extended Languages 1in Lisp

Tasuku HIRAISHI
Masahiro YASUGI
Taiich1 YUASA

Kyoto University

Introduction

* Many extended C-like languages are
implemented by translating them into C
(multi-threading, check-pointing, GC, etc.)

— Much easier than modifying a C compiler.

— Once implemented, works on various platforms.

Language Extensions by Translation

Programs for Transformation

Extended Language

[Variants

Structures
Objects (of OOL)

Convenient for transformation and analysis.

AST = Abstract Syntax Tree

Our Proposal

* Language extensions for S-expression based C
languages (SC languages).
— An AST 1s represented by an S-expression.

— The S-expression 1s also used as (part of) a source program.

Transformation Rules

Sexpr Based C

Extended S (SC-0)

S-expressions

Convenient for transformation and analysis.

Suitable as a source language.

Purpose

* Decreasing implementation cost of
language extension thanks to:

— Pre-exasting Lisp capabilities for
manipulating S-expressions,

— Easiness of adding new constructs,

— Natural description of transformation rules,

— Reusability of (part of) implementation.

Table of Contents

* SC Language System
— Overview
— SC-0 Language
— Transformation Rules
* An Example of a Language Extension
— Lightweight-SC
* Related Work
* Future Work and Summary

The SC Language System

» The SC Language System
— Overview
— The SC-0 Language
— Transformation Rules
* An Example of a Language Extension
— Lightweight-SC
* Related Work
* Future Work and Summary

The SC Language System Overview

* A framework for language extensions over SC
languages.

 Deals with transformation from extended SCs
mnto C.

 Consists of three modules:

FT]

— The SC compiler

L

— The SC translator

1

— The SC preprocessor

Transformation Rule-Set B

Further Extended SC —{ SC prgpr@.cegs_@r]—{ SC translator J*

Transformation Rule-Set A

m SC p’i‘éﬁfmﬁéﬁéf]—{ SC translator]*

SC preprocessor | ——{ SC compiler |

SC compiler :5C-0 - C

-

SC translator | - an SC — another SC

| SC Pfﬁpréﬂ@ﬁ'ﬁﬁf&] . preprocess (Imacro expansion, etc.)

The SC-0 Language

* Semantics of C
* Syntax based on S-expressions.

long sum(long *ar, int n){
(def (sum ar n) (fn long (ptr long) int) long s=0;

(def s long 0) int 1=0;

(defiint 0) dof

(do-while 1 h if (i >= n) break;
(if (>=1n) (break)) s += ar[i++];
(+= s (arefar (inc1)))) } while(1);

(return s)) return s;

}

SC-0 Syntax (for Expressions)

. SC-0
d=a+b*(-c) (=d(+a(*b(-c)))
X += 4 (+=x4)

f(a, b) (fab)

(a>b)?a:b (if-exp (>ab)ab)
b = *pa (= b (mref pa))

pa = &a (= pa (ptr a))

SC-0 Syntax (for Expressions)

C SC-0
ar[3][4] (arefar 3 4)
st.a (fref st a)
sizeof (a) (sizeof a)
sizeof (int) (sizeof int)

| = (int)d

(=1 (castintd))

(funarray[3]) (a,b)

((aref funarray 3) ab)

SC-0 Syntax (for Statements)

¢ SC-0
If (a>0) (If (>a0)
a++; (Inc a)
else a--; (dec a))
switch (n) { (switch n

case 1: ... break;
case 2. ... break:

default: ...

)

(case 1) ... (break)
(case 2) ... (break)
(default) ...)

SC-0 Syntax (for Declarations)

¢ SC-0
inta=10; (def a int 10)
static *ps; (static ps (ptr int))

iInt sgr (long x)
{ return xX*x; }

(def (sgr x) (fn Int long)
(return (* X X)))

void foo (int x){}

(def (foo x) (fn void int))

void foo (int);

(decl foo (fn void int))

SC-0 Syntax (for Declarations)

o
struct strab {
int a;
long b;
¢

SC-0

(def (struct strab)
(def a int)
(def b long))

typedef int *int_p;

(deftype int-p (ptr int))

typedef char str[256];

(deftype str (array int 256))

SC-0 Syntax (for 1ype-Lxpressions)

Type description is more readable.

C
typedef void
"("("99_1)
(void *(*)(int,int)))(long,long);

SC-0 |

(deftype gg-t

(ptr (fn
(ptr (fn (ptr void) long long))
(ptr (fn (ptr void) int int)))) I

The SC Preprocessor

* Corresponds to the C preprocessor.
— (%include file-name)
— (Y%defmacro name lambda-list . body)
— (%defconstant name Sexpr)
— (%ifdef symbol bodyl body2)
— (%ifndef symbol bodyl body?2)
— (%lif Sexpr bodyl body?2)
— (%cinclude C-header-file-name)
o for using printf, NULL, etc.

The SC Translator

* Interprets transformation rules for
transforming S-expressions.

* The mput/output S-expression 1s:
— An extended SC program,
— An SC-0 program, or
— An intermediate data structure.

Transformation Rule Set

S-expression

Transformation Rules

* Defined as pattern-matching functions over
their arguments.

* The SC translator compiles rules mnto usual
Common Lisp function definitions.

Lisp function

Transformation Rule Set

S-expression . S-expression

Writing Transformation Rules

(STAT (begin ,@rem)) Backquote-macro-like
-> ((begin ,@(BODY rem))) notations for patterns.
(STAT (if ,exp ,@rem))
-> ((if ,(EXPR exp)

(@(mapcar # (lambda (st) (car (STAT st))) rem)))
(STAT (switch ,exp ,@rem))
-> ((switch ,(EXPR exp) ,@(BODY rem)))
(STAT (while .exp ,@rem))
-> (let ((cdt (EXPR exp)))

“((if ,cdt

(do-while ,cdt ,@(BODY rem)))))
(STAT (loop ,@rem))
-> *((do-while 1 ,@(BODY rem)))

Applying Transtormation Rules

(F (loop ,@body))
-> ‘(do-while 1 ,@body)

(F (while ,cond ,@body))

-> ‘(1f ,cond (do-while ,cond ,@body))

(F (while (<1 10) (++ 1) (-- 3))) = 7
Pattern: (Wbope , @Gborg) , @body),
Argument: (while (< 1 10) (++ 1) (-- 1))

Applying Transtormation Rules

(F (loop ,@body))

-> ‘(do-while 1 ,@body)

(F (while ,cond ,@body))

-> ‘(1f ,cond (do-while ,cond ,@body))

'cond — (< 1 10)
body = (Gt 1) (== JJ)
(F (while (< 1 10) (++ 1) (-- 31)))

= (Giff ,cond 10)
(do-while (eomdl0) (@bodly (-- 1)))

An Example of a Language Extension

v' The SC Language System

— Overview
— The SC-0 Language

— Transtormation Rules

» An Example of a Language Extension
— Lightweight-SC

* Related Work

* Future Work and Summary

LW-SC (Lightweight-SC)
* SC-0 + nested functions

(def (h i[@)(fn int int (ptr (lightweight int int)))

(return/{g i)]

(def (foo@) (fn int int)
(def@int*@) /
(def y\int Q)

(def (g1 b) (Ilgtjweight int int) |

(incX)

> nested function
(return (+@

(=vy (h10[gl
(return (+ XVY)))

Implementing Nested Functions

 Translate LW-SC mto SC-0.

How nested functions access local variables of
their owner?

(def (foo) (fn ...) (def (foo) (fn ...)
(def@int) (def@int)

(def (1) (lightweight ...))

(def (g 1:"-,_—in-foo) (fn)
(COE))

.--) .(.r.etu rrué))

Naive Implementation

= Each generated C program employs an explicit stack.
= The explicit stack saves local vanables, arguments, etc.
= Access owner’s local vaniable can be accessed through

a frame pointer on the explicit stack, which 1s passed as an
additional parameter.

gl in foo

(struct foo_frame A
{ 1

return|pfp- >a|; }

explicit stack

Implementation with Lightweight Closures

m Explicit stack 1s referred to only when nested functions are
actually invoked.

= When “nested function” calls occur, the explicit stack 1s
validated (by temporarily returning executing functions).

refurn

 save

explicit stack execution stack for C

Implementation with Lightweight Closures

m Explicit stack 1s referred to only when nested functions are
actually invoked.

= When “nested function” calls occur, the explicit stack 1s
validated (by temporarily returning executing functions).

validate

gl in_foo

(struct foo_frame)

{ e I

return|pfp- :=-a|; +

explicit stack

Implementation with Lightweight Closures

= When returning from the nested function, reconstruct the
execution stack restoring the local variables, the parameters,
and the execution points.

mvalidate reconstruct

=P

a (m@valid)

RYAY

explicit stack execution stack for C

Translation from LW-SC to SC-0

Translation divided mto four phases (rule-sets):

1. type rule-set: Adds type information to all
expressions.

2. temp rule-set: Transforms in such a way that no
function call appears as a subexpression.

3. lightweight rule-set: The main transformation

4. untype rule-set: Removes the type information
added by type rule-set.

Phase 1: Type Rule-Set

* Transtorms each expression into
(the type-expression expression).
* Adds the symbol "call” at the head of each function call.

(def (h x) (fn double double)
(def (h x) (fn double double) (def y int 10)

(def y int 10) ==p (return (the double
(return (+ vy (f x)))) (+ (the int y)
(the double

(call (the (fn double double) f)
(the double x)))))))

Phase 2: Temp Rule-Set

e (f(gx)) — (=tmp (gx))
(f tmp)

* Adds declarations for the femporary variables.

(def (h x) (fn double double)

(def (h x) (fn double double) (defy int 10)

(def y int 10) (def tmp double)
(return (the double (the double
(+ (the inty) mmp (= (the double tmp)
(the double (the double
(call (the (fn double double) f) (call (the (fn double double) f)
(the double x))))) (the double x)))))

(return (+ (the int y)
(the double tmp)))))

Phase 3: Lightweight Rule-Set

e Moves all definitions of nested functions to be
top-level definitions.

* Adds defimitions of special variables/functions.
* The other transformation needed for:

— invocation of ordinary/nested functions,
— returning from functions,

— function detfinitions.

Phase 4: Untype Rule-Set

* Removes type information to generate correct
SC-0 code.

(def (h x) (fn double double) (def (h x) (fn double double)
(def y int 10) (def y int 10)
(def tmp double) ==y (def tmp double)
(the double (= tmp (f X))
(= (the double tmp) (return (+ y tmp)))
(the double

(call (the (fn double double) f)
(the double x)))))
(return (+ (the int y)
(the double tmp)))))

Performance

* The GNU C Compiler also provides nested
functions as an extension to C (implemented as
an extended C compiler).

* Compare allocation/maintenance overhead
— UltraSPARC-III (1.05GHz) and Pentium 4 (3GHz)
— GCC with —O2 optimizers as a backend for SC.

Performance

Time Relative to plamn C

45

4

3.5

3

2.5

2
1D
18
0.57

2 BinTree BinZList fib(36) BinTree BinZList fib(36)

UltraSPARC-IIT Pentium 4

Implementation Cost

* The number of lines of each rule-set:

type 450
temp 340
lightweight 780
untype 10

* The rule-sets type. temp and untype are reusable for
many other extensions.

» Generated C code can be compiled by most C compilers.

Application of LW-SC

* Multi-threading
* Check-pointing
* Copying GC

* Load balancing

Implementation of Copying GC

(deftype sht (ptr (lightweight void void)))

(def (randsearch scan0 this n) (fn void sht (ptr Bintree) int)

(def (scan1) (lightweight void void) ; nested function
(= this (move this)) ' root scan
(scan0)) > scan for caller

(decl I Int)

(decl Kk int)

(decl seed (array unsigned-short 3))
(= (aref seed 0) 8) (= (aref seed 1) 9)
(= (aref seed 2) 10)
(for (F10) (<i1n)(inci))
(= k (nrand48 seed))
(search scan this k 0))) ; pass scan1 as an adidtional arg

Related Work

v' The SC Language System

— Overview
— The SC-0 Language

— Transtormation Rules

v An Example of a Language Extension
— Lightweight-SC

» Related Work

* Future Work and Summary

Related Work

* Cilk, OpenMP, etc.
— Extended Language - AST - ... - AST - C

— Not a framework for general language extensions.

Related Work

* Reflection, compile-time reflection
— kinds of language extensions.

— manipulating behaviors of a running program by
referring to or modifying meta-level information.

— Compile-time reflection 1s similar to our approach,

— but we provide a more generic framework to
transform program.

Related Work

* Pre-Scheme
— a dialect of Scheme
— allows low-level machine access of C

(lacks some features of Scheme such as GC, full
proper tail recursion, etc.)

— SC 1s much closer to C.

Future Work and Summary

v' The SC Language System

— Overview
— The SC-0 Language

— Transtormation rules

v An Example of a Language Extension
— Lightweight-SC

v’ Related Work

» Future Work and Summary

Future Work

* Debugging support for extended SC
programmers.

— solved by making transformation rules weave
debugging code into their output.

* Integrating (independently developed) two or
more extensions.

* Providing advanced services based on LW-SC:
— Copying GC,
— Check-pointing,
— Load balancing.

Summary

* A scheme for extending the C language using
S-expression based C languages.

* An example of a language extension
— LW-S8C

» Highly flexible language extensions can be
achieved at low implementation cost.

