


/2

¢ Common Lasp:

5¢ “special variables”

U
A :

¢ Example: *print-base*®

I
7IN

I
I\

A
7

Scheme:

Al

2¢ with-output-to-file

¢ “flud varables”, parameter objects, etc.



DYNAMIC SCOPING

¥
“printbase”




A

st Lexical scope: References may occur only
within portions textually contained within
the establishing construct.

A

2¢ Indehinite scope:
References may occur anywhere.



A

¢ Dynamic extent: References may occur in

the interval between establishment and
disestablishment of an entity, obeying a

stack-like discipline.

NA

s¢ Indehinite extent: The entity exists as long
as the possibility of reference remains.



DYNAMIC SCOPING -
DEFINITIONS IN CLTL2

-
S
N

it : e :
s¢ “Dynamic scope” 1s strictly a misnomer.

-
— —

¢ Nevertheless, 1t 1s useful and traditionally
means 1ndehinite scope & dynamic extent.”



\I2
7IN

A\
Z\

“A Simple Telecom Example”

(from the Aspectd Programming Guide at http://eclipse.org/aspect)/)

5¢ Classes Customer - Call -
LongDistance & Local Connection

Al

2¢ Aspects Timing & Billing



DYNAMIC SCOPING AS
THE ESSENCE OF AOP

Compiling and Running

The files timing.Ist and billing.1st contain file lists for the timing and billing configurations. To build and
run the application with only the timing feature, go to the directory examples and type:

ajc -argfile telecom/timing.lst
java telecom.TimingSimulation
To build and run the application with the timing and billing features, go to the directory examples and

type:

ajc -argfile telecom/billing.lst
java telecom.BillingSimulation



.

2 (with-active-aspects (timing)
(timing-simulation))

.

¢ (with-active-aspects (timing billing)
(billing-simulation))

Al

’¢ ...but with intermediate compilation...

I



2¢ Aspectl: AOP for Common Lisp

2 Closer to MOP: Compatibility layer for
Allegro, CLISP, CMUCL, LispWorks,
MCL, OpenMCL, SBCL, and counting...

st Contextl.: Context-Oriented Programming



s The DLETF Framework

.

¢ An example: Special classes

A

¢ How 1s this implemented?



¢ Recall SETF in Common Lisp:

(setf (person-name p) “Pascal”)

(lett (((person-name p) “Pascal”)) ...)

Al

2 Let’'s make 1t explicitly dynamically scoped:
(dletf (((person-name p) “Pascal”)) ...)



5% An example:

(stmilar to what can be done in CLLIM)

(dlett (((medium-ink medium) +red+)
((medium-style medium) +bold+))

(draw-line medium x1 yl x2 y2))



2« DLETF 1tself 1s “only” a framework.

.

¢ Special classes are implemented by a

metaclass that uses the hooks of DLLETF.

.

¢ Other “plugins” are also possible.
(lists, arrays, structures, hashtables, ...)



%« LETF on Lisp Machines

s LETF on “stock hardware”:

2

¢ Global side eftects + unwind-protect
(That's not what we want!)

2 LETFE vs. LETF-GLOBALLY



(let ((templ (medium-ink m))
(temp2 (medium-style m)))
(unwind-protect
(progn (setf (medium-ink m) +red+
(medium-style m) +bold+)

)

(setf (medium-ink m) templ
(medium-style m) temp2)))



A

¢ From the HyperSpec:

\I2
7IN

\/

7]

“progv allows binding one or more

dynamic variables whose names may be
determined at runtime.”

2¢ “The bindings of the dynamic varmables

)

are undone on exit from progv.’

5 “[...] 1t provides a handle on the
mechanism for dynamic varables.”



Sy

2 Store “special” symbols instead of values.

A

2¢ Bind values as symbol values.

A

2t Access the values it *symbol-access* 1s nil.

A

s¢ Access the symbols otherwise.



(dlett (((medium-ink m) +red+)
((medium-style m) +bold+))

...expands to...

(progv (let ((*symbol-access* t))
(hist (medium-i1nk m)
(medium-style m)))
(list +red+ +b01d+))



(detclass medium ()

((ink :accessor medium-ink :special t)
(style :accesser medium-style :special t))
(:metaclass special-class))



(detmethod slot-value-using-class
((class special-class)
object
(slot special-effective-slot-definition))

(let ((slot-symbol (call-next-method)))
(cond (¥*symbol-access* slot-symbol)

((boundp slot-symbol)
(symbol-value slot-symbol))

(t (slot-unbound ...)))))



A

¢ Slot imtialization may bypass the slot
accessors. Fixed via shared-initialize.

A

2 Slots can be changed from non-special to

special, but not vice versa. (Conversion
from one binding to multiple bindings 1s

easy, the other way around 1s not!)



A

s Arrays, lists, structures, etc., do not
provide metaobject protocols.

s Instead: Shadow symbols of the

common-lisp package. (see paper)



.

2¢ Dynamic Scoping:
shallow binding vs. deep binding vs.

acquaintance vectors

.

¢ Double indirection: may not hurt.

KA

2 Slot access: only special slots are atfected.



2« DLETF part of AspectL.:
http://common-lisp.net/project/aspectl

2¢ also special-function, based on DLETF

2« DLETFE will also be part of ContextL.:

http://common-lisp.net/project/closer

A

5¢ More to come...






