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• In the beginning (1983), there was
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• JIS and some Chinese encodings (16 bit)

• Couldn’t mix encodings

• Doc in Hebrew, Kanji, and Serbo-Croation

• In the beginning (1983), there was

• ASCII (universally recognized)

• Everything else - mostly 8-bit encodings

• ISO-8859-x

• Code Pages (IBM PC)

• JIS and some Chinese encodings (16 bit)

• Couldn’t mix encodings

• Doc in Hebrew, Kanji, and Serbo-Croation



CLforJavaCLforJava

Lisp ResponseLisp Response

• Agree on a subset of ASCII that works 
everywhere (standard char)

• Add font and bits attributes to characters 
(later dropped)

• Fuzzy distinction between types of chars

• Non-portable method for specifying file 
encoding 
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• Globalization requires speaking all languages

• Many vendor-specific solutions

• Unicode version 4 has answers to many of the 
issues evoked by Common Lisp - and then 
some

• It’s time to formally integrate Unicode into the 
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• Characters are no longer atomic
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• Never confuse the encoding with an ordering

• Collation is entirely context-dependent
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• Different if your German or Swedish

• Chars have a rich set of properties

• Simple - digit?, whitespace?

• Complex - composition, direction, mirrored?
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• Some chars are composed of others

• E.g. ‘Ä’ decomposes to ‘A’ and ‘ ̈’

• 2 chars are equivalent iff their decomposed, 
binary forms are identical

• But some chars are really “the same” even if 
they’re different

• E.g. some Katakana full and half-width chars
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• Capstone software engineering course

• Multi-semester undergraduate project
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• See “Common Lisp for Java: A New 
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• Capstone software engineering course

• Multi-semester undergraduate project

• Gives students a “real world” experience

• New, original implementation of Common Lisp

• Written in Java and Lisp

• See “Common Lisp for Java: A New 
Implementatoin Intertwined with Java”
Wed 11am



CLforJavaCLforJava

Character TypesCharacter Types
• CL standard defines

• Standard-Char - 96 ASCII chars

• Base-char, Extended-char - up to the impl

• CLforJava defines

• Standard-Char - same as standard

• Base-char - Unicode definition of base 
character

• Can’t be composed with char to the left

• Extended-char - all the rest 

• CL standard defines

• Standard-Char - 96 ASCII chars

• Base-char, Extended-char - up to the impl

• CLforJava defines

• Standard-Char - same as standard

• Base-char - Unicode definition of base 
character

• Can’t be composed with char to the left

• Extended-char - all the rest 



CLforJavaCLforJava

Character NamingCharacter Naming

• Official names - LATIN SMALL LETTER A

• Unofficial names - a

• Lispified names - LATIN-SMALL-LETTER-A

• #\a, #\|LATIN SMALL LETTER A|,
#\LATIN-SMALL-LETTER-A

• Lisp names - RETURN, LINEFEED

• Official names - LATIN SMALL LETTER A

• Unofficial names - a

• Lispified names - LATIN-SMALL-LETTER-A

• #\a, #\|LATIN SMALL LETTER A|,
#\LATIN-SMALL-LETTER-A

• Lisp names - RETURN, LINEFEED



CLforJavaCLforJava

Character Naming in JavaCharacter Naming in Java

• 4 interfaces
• lisp.common.type.Character

• lisp.common.type.BaseChar

• lisp.common.type.StandardChar

• lisp.common.type.ExtendedChar
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• public static final Character slash;

• 4 interfaces
• lisp.common.type.Character

• lisp.common.type.BaseChar

• lisp.common.type.StandardChar

• lisp.common.type.ExtendedChar

• Standard chars available as static fields in StandardChar

• public static final Character a;

• public static final Character slash;



CLforJavaCLforJava

Loading Character 
Database

Loading Character 
Database

• XML file derived from Unicode database

• Approx 15,100 chars

• Contains all names, code points, etc

• Loaded on startup

• All chars are singleton objects

• Stored in a hash map by code point, all 
names

• Factory class is always a lookup

• XML file derived from Unicode database

• Approx 15,100 chars

• Contains all names, code points, etc

• Loaded on startup

• All chars are singleton objects

• Stored in a hash map by code point, all 
names

• Factory class is always a lookup



CLforJavaCLforJava

Character I/O StreamsCharacter I/O Streams

• Lisp character I/O streams extend the Java 
buffered Reader and Writer classes

• Necessary to specify the input encoding

• Java system default if not specified

• No “guessing” function implemented

• Lisp character I/O streams extend the Java 
buffered Reader and Writer classes

• Necessary to specify the input encoding

• Java system default if not specified

• No “guessing” function implemented



CLforJavaCLforJava

Other CLs and UnicodeOther CLs and Unicode



CLforJavaCLforJava

Comparison TableComparison Table
• 4 Common Lisp Implementations

• Allegro (Franz), CLisp, LispWorks, CLforJava
• 16 aspects

• 4 Common Lisp Implementations
• Allegro (Franz), CLisp, LispWorks, CLforJava

• 16 aspects

General File 
Encoding Characters Strings

Unicode level Base Char 
definition

System 
default

Reader 
support

Reader 
support

Comparison 
algorithm

Printing 
support

Discovery 
support

Comparison 
algorithm

Comparison 
algorithm

Custom 
Collation

Locale 
support

Available 
encodings

Printing 
support

Printing 
support

Char Width



CLforJavaCLforJava

The HighlightsThe Highlights

• Allegro and CLforJava support

• Unicode 4, Naming, and Collation

• Allegro and LispWorks support encoding 
discovery
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• Each has a different definition of base-char
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“LATIN SMALL LETTER A”

• Unicode names are also lispified by ‘-’

• LATIN-SMALL-LETTER-A

• Standard-Chars retain their legacy names as 
well

• Characters have a ‘preferred’ name
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• Unicode chars have a wealth (49) of properties

• Digit, whitespace, direction, combining, etc

• Functions, macros, and constants for support
• char-available-properties => 

list of all char properties

• char-properties char => 
property list for the char

• getf char indicator &optional default => 
value of the indicated property

• maximum-surrogate-code-point
minimum-surrogate-code-point -

values of the high/low surrogate code points
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• Comparison functions conform to the 2 types of 
equivalence and of decomposition

• char= and char> (and similar) compare 
characters after canonical decomposition

• char-equal and char-greaterp (and 
similar) compare characters after compatibility
decomposition. Also, it is case-insensitive.
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• char-code, char-int char => code-point (an integer)
code-char code-point => character at that code point

• char-name char => returns the preferred name of the 
character. The preferred name can be changed to another of 
the char names by setf.

• digit-char-p char &optional radix => 
true if its digit property is true. Radix is honored except for 
Roman numerals.

• alpha-char-p char => true if its letter property is true.

• graphic-char-p char => true if char is not ignorable

• code-char-limit upper bound for code points
for the supported Unicode level (v4 is #x10FFFF)
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• base-string contains only base-chars (current)

• Implications of this restriction

• Does not contain any combining chars

• Affects alterations of base-strings and 
coercion to a base-string

• Insertion of an extended-char changes the 
preceding base-char

• Composed on the fly
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• Standard does not specify an internal encoding

• It must support all of the updated and new 
functions
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• String comparision - similar to Character 

compare

• string=, string<, etc use canonical
decomposition and either binary or locale-based 
comparison (Unicode NFC)

• string-equal, string-lessp, etc use 
compatibility decomposition for equivalence or 
locale-based comparison (Unicode NFKC)

• Implementations may support sort keys 
(pre-computed comparison key)
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• The Reader is always presented with Unicode 
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• Reader never has to translate

• Affects the stream functions (e.g. read-char)
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• #\

• Supports the Unicode char names and their 
lispified form

• #U, #U+

• Takes 4 or 6 hex digits representing the code 
point of the char

• “” - the string read macro

• Works as now, but recognizes #U and #U+
read macros embedded in the string
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• Potential numbers

• Definition includes any character whose ‘digit’
property is true - includes Roman numerals

• Legal integer numbers must come from the 
same Unicode block

• E.g. can’t mix European (1, 2...) with 
Devanagari (१, २ ...)

• Question of hex definition (#x१२FF)
• Recognizes ratio characters (⅔, ⅘)

• 8⅔ => 26/3
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• If nil, the character is sent uninterpreted to 
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• Strings

• If nil, the string is composed (NFC or NFKC) 
and the characters are sent to the output. 
The printer must honor bi-directional 
information. This may also require mirroring.

• Otherwise, the characters are streamed in 
memory order between “ ”. If the stream 
encoding supports a char, the char is 
streamed. If not, the char is escaped using #U
or #U+ syntax.

• Ignorable chars are always passed
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• All of the behavior for the Printer

• Pretty Printer must also conform to

• Unicode line break algorithm to determine 
potential line break locations

• Char width information

• Unicode chars may be zero, half, or full 
width characters - format
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• encoding

• A CLOS class that translates between 
Unicode encoding and some other encoding 
(e.g ISO-8859-1)

• An encoding instance may be passed to the 
open function’s :external-format parameter

• An encoding instance is one of the IANA 
recognized encodings or an implementation-
specific encoding

• Encodings may be combined in a stream
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• :external-format arg takes an encoding

• Current *locale* provides a default

• :probe argument

• Returns a stream that contains an 
encoding
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• Returns a second value that is the file 
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• read-char returns a valid Unicode character

• open

• :external-format arg takes an encoding

• Current *locale* provides a default

• :probe argument

• Returns a stream that contains an 
encoding

• probe-file

• Returns a second value that is the file 
encoding

• read-char returns a valid Unicode character



CLforJavaCLforJava

Character I/O - New FnsCharacter I/O - New Fns

• list-encodings => returns a list of the 
encodings supported by this implementation

• encoding-name encoding => name of the 
encoding

• stream-encoding stream => encoding of the 
stream

• list-encodings => returns a list of the 
encodings supported by this implementation

• encoding-name encoding => name of the 
encoding

• stream-encoding stream => encoding of the 
stream



CLforJavaCLforJava

SummarySummary



CLforJavaCLforJava

Unicode 
Integration Implications

Unicode 
Integration Implications

• Goes beyond just adding some characters

• Pervasive effects in major subsystems

• Characters, Strings

• Reader, Printer

• Character I/O

• Sorting, comparisons

• Goes beyond just adding some characters

• Pervasive effects in major subsystems

• Characters, Strings

• Reader, Printer

• Character I/O

• Sorting, comparisons



CLforJavaCLforJava

Unicode ImplicationsUnicode Implications
• It’s so complex an issue...

• Small differences in implementation can 
disrupt portability
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• Update the Common Lisp standard

• Give it a name - How about...?
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