
Unicode 4.0 In Common
Lisp

Adoption of Unicode In CLforJava

Unicode 4.0 In Common
Lisp

Adoption of Unicode In CLforJava

Jerry Boetje
ILC 2005

boetjeg@cofc.edu

Jerry Boetje
ILC 2005

boetjeg@cofc.edu

(defun the(defun the--थचऊॉथचऊॉ --oldold--بطهصبطهص--fn (afn (aפףגפףגd) d)
(if (eql a(if (eql aפףגפףגd 2) 2 (* ad 2) 2 (* aפףגפףגd (thed (the--थचऊॉथचऊॉ --oldold--بطهصبطهص--fn (1fn (1--

aaפףגפףגd)))))d)))))

CLforJavaCLforJava

ASCII LegacyASCII Legacy

• In the beginning (1983), there was

• ASCII (universally recognized)

• Everything else - mostly 8-bit encodings

• ISO-8859-x

• Code Pages (IBM PC)

• JIS and some Chinese encodings (16 bit)

• Couldn’t mix encodings

• Doc in Hebrew, Kanji, and Serbo-Croation

• In the beginning (1983), there was

• ASCII (universally recognized)

• Everything else - mostly 8-bit encodings

• ISO-8859-x

• Code Pages (IBM PC)

• JIS and some Chinese encodings (16 bit)

• Couldn’t mix encodings

• Doc in Hebrew, Kanji, and Serbo-Croation

CLforJavaCLforJava

Lisp ResponseLisp Response

• Agree on a subset of ASCII that works
everywhere (standard char)

• Add font and bits attributes to characters
(later dropped)

• Fuzzy distinction between types of chars

• Non-portable method for specifying file
encoding

• Define functions that would work with ASCII

• Agree on a subset of ASCII that works
everywhere (standard char)

• Add font and bits attributes to characters
(later dropped)

• Fuzzy distinction between types of chars

• Non-portable method for specifying file
encoding

• Define functions that would work with ASCII

CLforJavaCLforJava

Pretty Good For Its TimePretty Good For Its Time

CLforJavaCLforJava

The Rest of the
World’s Response

The Rest of the
World’s Response

• Define a uniform encoding for all characters on
Earth

• Deal with the hard issues

• Collation

• Line breaks

• Equivalence

• Composition

• etc.

• Define a uniform encoding for all characters on
Earth

• Deal with the hard issues

• Collation

• Line breaks

• Equivalence

• Composition

• etc.

UnicodeUnicode

CLforJavaCLforJava

20 Years Later20 Years Later

• Globalization requires speaking all languages

• Many vendor-specific solutions

• Unicode version 4 has answers to many of the
issues evoked by Common Lisp - and then
some

• It’s time to formally integrate Unicode into the
Common Lisp Standard

• But it’s not going to be easy!

• Globalization requires speaking all languages

• Many vendor-specific solutions

• Unicode version 4 has answers to many of the
issues evoked by Common Lisp - and then
some

• It’s time to formally integrate Unicode into the
Common Lisp Standard

• But it’s not going to be easy!

CLforJavaCLforJava

Unicode 4 in BriefUnicode 4 in Brief

CLforJavaCLforJava

Nature of CharactersNature of Characters

• It’s not enough to assign a number to a char

• Characters are no longer atomic

• A run of chars may be equivalent to one char

• Some provide information but not content

• Direction

• Formatting

• It’s not enough to assign a number to a char

• Characters are no longer atomic

• A run of chars may be equivalent to one char

• Some provide information but not content

• Direction

• Formatting

CLforJavaCLforJava

Nature of CharactersNature of Characters
• Never confuse the encoding with an ordering

• Collation is entirely context-dependent

• Does ‘o’ come before, after, or the same as
‘ö’

• Different if your German or Swedish

• Chars have a rich set of properties

• Simple - digit?, whitespace?

• Complex - composition, direction, mirrored?

• Never confuse the encoding with an ordering

• Collation is entirely context-dependent

• Does ‘o’ come before, after, or the same as
‘ö’

• Different if your German or Swedish

• Chars have a rich set of properties

• Simple - digit?, whitespace?

• Complex - composition, direction, mirrored?

CLforJavaCLforJava

EncodingEncoding

• Number assignments are called ‘code points’

• Range #x0000 to #x10FFFF (21 bits)

• ASCII range is the same in Unicode

• Chars grouped into named ‘blocks’

• E.g. Tamil, Arabic, Number Forms

• Number assignments are called ‘code points’

• Range #x0000 to #x10FFFF (21 bits)

• ASCII range is the same in Unicode

• Chars grouped into named ‘blocks’

• E.g. Tamil, Arabic, Number Forms

CLforJavaCLforJava

Composition /
Normalization
Composition /
Normalization

• Some chars are composed of others

• E.g. ‘Ä’ decomposes to ‘A’ and ‘ ̈’

• 2 chars are equivalent iff their decomposed,
binary forms are identical

• But some chars are really “the same” even if
they’re different

• E.g. some Katakana full and half-width chars

• There are 2 definitions of equivalence
• Canonical and Compatibility

• Some chars are composed of others

• E.g. ‘Ä’ decomposes to ‘A’ and ‘ ̈’

• 2 chars are equivalent iff their decomposed,
binary forms are identical

• But some chars are really “the same” even if
they’re different

• E.g. some Katakana full and half-width chars

• There are 2 definitions of equivalence
• Canonical and Compatibility

CLforJavaCLforJava

CollationCollation

• Context-dependent (locales)

• Unicode defines a table-driven mechanism

• Very configurable (originally from IBM)

• Specifically not required

• Other mechanisms ok if equivalent results

• Sun/Java uses a rule-based system

• Context-dependent (locales)

• Unicode defines a table-driven mechanism

• Very configurable (originally from IBM)

• Specifically not required

• Other mechanisms ok if equivalent results

• Sun/Java uses a rule-based system

CLforJavaCLforJava

Bi-directional AlgorithmBi-directional Algorithm

• Unicode specifies algorithm to handle nested
changes in direction (R to L, L to R)

• Locale-dependent

• Very important with mixed languages

• Impacts the printer

• Characters not printed in memory order

• Some characters are mirrored

• Unicode specifies algorithm to handle nested
changes in direction (R to L, L to R)

• Locale-dependent

• Very important with mixed languages

• Impacts the printer

• Characters not printed in memory order

• Some characters are mirrored

CLforJavaCLforJava

Line Break AlgorithmLine Break Algorithm

• Unicode specifies algorithm to determine
possible line breaks

• Handles the <cr>, <lf>, <crlf> problem

• Locale-dependent

• Very important with mixed languages

• Impacts the pretty printer

• Unicode specifies algorithm to determine
possible line breaks

• Handles the <cr>, <lf>, <crlf> problem

• Locale-dependent

• Very important with mixed languages

• Impacts the pretty printer

CLforJavaCLforJava

Implies Pervasive Changes
to Several Lisp
Components

Implies Pervasive Changes
to Several Lisp
Components

CLforJavaCLforJava

CLforJava ImplementationCLforJava Implementation

CLforJavaCLforJava

CLforJava ProjectCLforJava Project
• Capstone software engineering course

• Multi-semester undergraduate project

• Gives students a “real world” experience

• New, original implementation of Common Lisp

• Written in Java and Lisp

• See “Common Lisp for Java: A New
Implementatoin Intertwined with Java”
Wed 11am

• Capstone software engineering course

• Multi-semester undergraduate project

• Gives students a “real world” experience

• New, original implementation of Common Lisp

• Written in Java and Lisp

• See “Common Lisp for Java: A New
Implementatoin Intertwined with Java”
Wed 11am

CLforJavaCLforJava

Character TypesCharacter Types
• CL standard defines

• Standard-Char - 96 ASCII chars

• Base-char, Extended-char - up to the impl

• CLforJava defines

• Standard-Char - same as standard

• Base-char - Unicode definition of base
character

• Can’t be composed with char to the left

• Extended-char - all the rest

• CL standard defines

• Standard-Char - 96 ASCII chars

• Base-char, Extended-char - up to the impl

• CLforJava defines

• Standard-Char - same as standard

• Base-char - Unicode definition of base
character

• Can’t be composed with char to the left

• Extended-char - all the rest

CLforJavaCLforJava

Character NamingCharacter Naming

• Official names - LATIN SMALL LETTER A

• Unofficial names - a

• Lispified names - LATIN-SMALL-LETTER-A

• #\a, #\|LATIN SMALL LETTER A|,
#\LATIN-SMALL-LETTER-A

• Lisp names - RETURN, LINEFEED

• Official names - LATIN SMALL LETTER A

• Unofficial names - a

• Lispified names - LATIN-SMALL-LETTER-A

• #\a, #\|LATIN SMALL LETTER A|,
#\LATIN-SMALL-LETTER-A

• Lisp names - RETURN, LINEFEED

CLforJavaCLforJava

Character Naming in JavaCharacter Naming in Java

• 4 interfaces
• lisp.common.type.Character

• lisp.common.type.BaseChar

• lisp.common.type.StandardChar

• lisp.common.type.ExtendedChar

• Standard chars available as static fields in StandardChar

• public static final Character a;

• public static final Character slash;

• 4 interfaces
• lisp.common.type.Character

• lisp.common.type.BaseChar

• lisp.common.type.StandardChar

• lisp.common.type.ExtendedChar

• Standard chars available as static fields in StandardChar

• public static final Character a;

• public static final Character slash;

CLforJavaCLforJava

Loading Character
Database

Loading Character
Database

• XML file derived from Unicode database

• Approx 15,100 chars

• Contains all names, code points, etc

• Loaded on startup

• All chars are singleton objects

• Stored in a hash map by code point, all
names

• Factory class is always a lookup

• XML file derived from Unicode database

• Approx 15,100 chars

• Contains all names, code points, etc

• Loaded on startup

• All chars are singleton objects

• Stored in a hash map by code point, all
names

• Factory class is always a lookup

CLforJavaCLforJava

Character I/O StreamsCharacter I/O Streams

• Lisp character I/O streams extend the Java
buffered Reader and Writer classes

• Necessary to specify the input encoding

• Java system default if not specified

• No “guessing” function implemented

• Lisp character I/O streams extend the Java
buffered Reader and Writer classes

• Necessary to specify the input encoding

• Java system default if not specified

• No “guessing” function implemented

CLforJavaCLforJava

Other CLs and UnicodeOther CLs and Unicode

CLforJavaCLforJava

Comparison TableComparison Table
• 4 Common Lisp Implementations

• Allegro (Franz), CLisp, LispWorks, CLforJava
• 16 aspects

• 4 Common Lisp Implementations
• Allegro (Franz), CLisp, LispWorks, CLforJava

• 16 aspects

General File
Encoding Characters Strings

Unicode level Base Char
definition

System
default

Reader
support

Reader
support

Comparison
algorithm

Printing
support

Discovery
support

Comparison
algorithm

Comparison
algorithm

Custom
Collation

Locale
support

Available
encodings

Printing
support

Printing
support

Char Width

CLforJavaCLforJava

The HighlightsThe Highlights

• Allegro and CLforJava support

• Unicode 4, Naming, and Collation

• Allegro and LispWorks support encoding
discovery

• CLforJava only one to escape Unicode chars in
strings

• Each has a different definition of base-char

• Allegro and CLforJava support

• Unicode 4, Naming, and Collation

• Allegro and LispWorks support encoding
discovery

• CLforJava only one to escape Unicode chars in
strings

• Each has a different definition of base-char

CLforJavaCLforJava

Proposal for Unicode in the
Common Lisp Standard

Proposal for Unicode in the
Common Lisp Standard

““Someone had to do it.Someone had to do it.””
-- Michael PalinMichael Palin

CLforJavaCLforJava

Components of the
Proposal

Components of the
Proposal

• Characters - type, naming, properties, functions

• Strings - types, encoding, functions

• The Reader - read macros, strings, numbers

• The Printer -
characters, strings, direction, line breaks, char
width

• Character I/O - types, functions, locales

• Characters - type, naming, properties, functions

• Strings - types, encoding, functions

• The Reader - read macros, strings, numbers

• The Printer -
characters, strings, direction, line breaks, char
width

• Character I/O - types, functions, locales

CLforJavaCLforJava

CharactersCharacters

CLforJavaCLforJava

Characters - TypesCharacters - Types

• Retain the current Standard-Char definition

• Retain the current Extended-char definition

• (not base-char)

• Redefine Base-Char to conform to the Unicode
definition of base character

• Canonical Combining Class value of 0

• Retain the current Standard-Char definition

• Retain the current Extended-char definition

• (not base-char)

• Redefine Base-Char to conform to the Unicode
definition of base character

• Canonical Combining Class value of 0

CLforJavaCLforJava

Characters - NamingCharacters - Naming
• Characters accessible via their Unicode name

• (name-char “LATIN SMALL LETTER A”) => #\a

• (char-name #\|LATIN SMALL LETTER A|) =>
“LATIN SMALL LETTER A”

• Unicode names are also lispified by ‘-’

• LATIN-SMALL-LETTER-A

• Standard-Chars retain their legacy names as
well

• Characters have a ‘preferred’ name

• Characters accessible via their Unicode name

• (name-char “LATIN SMALL LETTER A”) => #\a

• (char-name #\|LATIN SMALL LETTER A|) =>
“LATIN SMALL LETTER A”

• Unicode names are also lispified by ‘-’

• LATIN-SMALL-LETTER-A

• Standard-Chars retain their legacy names as
well

• Characters have a ‘preferred’ name

CLforJavaCLforJava

Characters - PropertiesCharacters - Properties
• Unicode chars have a wealth (49) of properties

• Digit, whitespace, direction, combining, etc

• Functions, macros, and constants for support
• char-available-properties =>

list of all char properties

• char-properties char =>
property list for the char

• getf char indicator &optional default =>
value of the indicated property

• maximum-surrogate-code-point
minimum-surrogate-code-point -

values of the high/low surrogate code points

• Unicode chars have a wealth (49) of properties

• Digit, whitespace, direction, combining, etc

• Functions, macros, and constants for support
• char-available-properties =>

list of all char properties

• char-properties char =>
property list for the char

• getf char indicator &optional default =>
value of the indicated property

• maximum-surrogate-code-point
minimum-surrogate-code-point -

values of the high/low surrogate code points

CLforJavaCLforJava

Characters - Modified FnsCharacters - Modified Fns

• Comparison functions conform to the 2 types of
equivalence and of decomposition

• char= and char> (and similar) compare
characters after canonical decomposition

• char-equal and char-greaterp (and
similar) compare characters after compatibility
decomposition. Also, it is case-insensitive.

• Comparison functions conform to the 2 types of
equivalence and of decomposition

• char= and char> (and similar) compare
characters after canonical decomposition

• char-equal and char-greaterp (and
similar) compare characters after compatibility
decomposition. Also, it is case-insensitive.

CLforJavaCLforJava

Characters - Modified FnsCharacters - Modified Fns

• char-code, char-int char => code-point (an integer)
code-char code-point => character at that code point

• char-name char => returns the preferred name of the
character. The preferred name can be changed to another of
the char names by setf.

• digit-char-p char &optional radix =>
true if its digit property is true. Radix is honored except for
Roman numerals.

• alpha-char-p char => true if its letter property is true.

• graphic-char-p char => true if char is not ignorable

• code-char-limit upper bound for code points
for the supported Unicode level (v4 is #x10FFFF)

• char-code, char-int char => code-point (an integer)
code-char code-point => character at that code point

• char-name char => returns the preferred name of the
character. The preferred name can be changed to another of
the char names by setf.

• digit-char-p char &optional radix =>
true if its digit property is true. Radix is honored except for
Roman numerals.

• alpha-char-p char => true if its letter property is true.

• graphic-char-p char => true if char is not ignorable

• code-char-limit upper bound for code points
for the supported Unicode level (v4 is #x10FFFF)

CLforJavaCLforJava

Characters - New FnsCharacters - New Fns

• char-names char => list of names of the char.
The first name is the preferred name.

• char-compose base-char &rest extended-
chars

=> a compatibility composed char

• char-names char => list of names of the char.
The first name is the preferred name.

• char-compose base-char &rest extended-
chars

=> a compatibility composed char

CLforJavaCLforJava

StringsStrings

CLforJavaCLforJava

Strings - TypesStrings - Types

• base-string contains only base-chars (current)

• Implications of this restriction

• Does not contain any combining chars

• Affects alterations of base-strings and
coercion to a base-string

• Insertion of an extended-char changes the
preceding base-char

• Composed on the fly

• base-string contains only base-chars (current)

• Implications of this restriction

• Does not contain any combining chars

• Affects alterations of base-strings and
coercion to a base-string

• Insertion of an extended-char changes the
preceding base-char

• Composed on the fly

CLforJavaCLforJava

Strings - EncodingStrings - Encoding

• Standard does not specify an internal encoding

• It must support all of the updated and new
functions

• Common choices would be UTF-8 and UTF-16

• Standard does not specify an internal encoding

• It must support all of the updated and new
functions

• Common choices would be UTF-8 and UTF-16

CLforJavaCLforJava

Strings -Modified FnsStrings -Modified Fns
• String comparision - similar to Character

compare

• string=, string<, etc use canonical
decomposition and either binary or locale-based
comparison (Unicode NFC)

• string-equal, string-lessp, etc use
compatibility decomposition for equivalence or
locale-based comparison (Unicode NFKC)

• Implementations may support sort keys
(pre-computed comparison key)

• String comparision - similar to Character
compare

• string=, string<, etc use canonical
decomposition and either binary or locale-based
comparison (Unicode NFC)

• string-equal, string-lessp, etc use
compatibility decomposition for equivalence or
locale-based comparison (Unicode NFKC)

• Implementations may support sort keys
(pre-computed comparison key)

CLforJavaCLforJava

Strings - New FnsStrings - New Fns
• Support for Unicode decomposition and

composition algorithms

• string-decompose-canonical string
=> new string in NFD form

• string-decompose-compatible string
=> new string in NFKD form

• string-compose-canonical string
=> new string in NFC if string is in NFD form

or
=> new string in NFKC if string is in NFKD

form

• Support for Unicode decomposition and
composition algorithms

• string-decompose-canonical string
=> new string in NFD form

• string-decompose-compatible string
=> new string in NFKD form

• string-compose-canonical string
=> new string in NFC if string is in NFD form

or
=> new string in NFKC if string is in NFKD

form

CLforJavaCLforJava

The ReaderThe Reader

CLforJavaCLforJava

Reader - The BasicsReader - The Basics

• The Reader is always presented with Unicode
characters

• Reader never has to translate

• Affects the stream functions (e.g. read-char)

• The Reader is always presented with Unicode
characters

• Reader never has to translate

• Affects the stream functions (e.g. read-char)

CLforJavaCLforJava

Reader - Read MacrosReader - Read Macros

• #\

• Supports the Unicode char names and their
lispified form

• #U, #U+

• Takes 4 or 6 hex digits representing the code
point of the char

• “” - the string read macro

• Works as now, but recognizes #U and #U+
read macros embedded in the string

• #\

• Supports the Unicode char names and their
lispified form

• #U, #U+

• Takes 4 or 6 hex digits representing the code
point of the char

• “” - the string read macro

• Works as now, but recognizes #U and #U+
read macros embedded in the string

CLforJavaCLforJava

Reader - NumbersReader - Numbers

• Potential numbers

• Definition includes any character whose ‘digit’
property is true - includes Roman numerals

• Legal integer numbers must come from the
same Unicode block

• E.g. can’t mix European (1, 2...) with
Devanagari (१, २ ...)

• Question of hex definition (#x१२FF)
• Recognizes ratio characters (⅔, ⅘)

• 8⅔ => 26/3

• Potential numbers

• Definition includes any character whose ‘digit’
property is true - includes Roman numerals

• Legal integer numbers must come from the
same Unicode block

• E.g. can’t mix European (1, 2...) with
Devanagari (१, २ ...)

• Question of hex definition (#x१२FF)
• Recognizes ratio characters (⅔, ⅘)

• 8⅔ => 26/3

CLforJavaCLforJava

The PrinterThe Printer

CLforJavaCLforJava

Printer - *Print-Escape*Printer - *Print-Escape*

• Characters

• If nil, the character is sent uninterpreted to
the stream

• Stream encoding may lose information

• Otherwise, character is printed using #\
notation

• Characters

• If nil, the character is sent uninterpreted to
the stream

• Stream encoding may lose information

• Otherwise, character is printed using #\
notation

CLforJavaCLforJava

Printer - *Print-Escape*Printer - *Print-Escape*

• Strings

• If nil, the string is composed (NFC or NFKC)
and the characters are sent to the output.
The printer must honor bi-directional
information. This may also require mirroring.

• Otherwise, the characters are streamed in
memory order between “ ”. If the stream
encoding supports a char, the char is
streamed. If not, the char is escaped using #U
or #U+ syntax.

• Ignorable chars are always passed

• Strings

• If nil, the string is composed (NFC or NFKC)
and the characters are sent to the output.
The printer must honor bi-directional
information. This may also require mirroring.

• Otherwise, the characters are streamed in
memory order between “ ”. If the stream
encoding supports a char, the char is
streamed. If not, the char is escaped using #U
or #U+ syntax.

• Ignorable chars are always passed

CLforJavaCLforJava

Pretty PrinterPretty Printer

• All of the behavior for the Printer

• Pretty Printer must also conform to

• Unicode line break algorithm to determine
potential line break locations

• Char width information

• Unicode chars may be zero, half, or full
width characters - format

• All of the behavior for the Printer

• Pretty Printer must also conform to

• Unicode line break algorithm to determine
potential line break locations

• Char width information

• Unicode chars may be zero, half, or full
width characters - format

CLforJavaCLforJava

Character I/OCharacter I/O

CLforJavaCLforJava

Character I/O - TypesCharacter I/O - Types

• encoding

• A CLOS class that translates between
Unicode encoding and some other encoding
(e.g ISO-8859-1)

• An encoding instance may be passed to the
open function’s :external-format parameter

• An encoding instance is one of the IANA
recognized encodings or an implementation-
specific encoding

• Encodings may be combined in a stream

• encoding

• A CLOS class that translates between
Unicode encoding and some other encoding
(e.g ISO-8859-1)

• An encoding instance may be passed to the
open function’s :external-format parameter

• An encoding instance is one of the IANA
recognized encodings or an implementation-
specific encoding

• Encodings may be combined in a stream

CLforJavaCLforJava

Character I/O - Modified
Fns

Character I/O - Modified
Fns

• open

• :external-format arg takes an encoding

• Current *locale* provides a default

• :probe argument

• Returns a stream that contains an
encoding

• probe-file

• Returns a second value that is the file
encoding

• read-char returns a valid Unicode character

• open

• :external-format arg takes an encoding

• Current *locale* provides a default

• :probe argument

• Returns a stream that contains an
encoding

• probe-file

• Returns a second value that is the file
encoding

• read-char returns a valid Unicode character

CLforJavaCLforJava

Character I/O - New FnsCharacter I/O - New Fns

• list-encodings => returns a list of the
encodings supported by this implementation

• encoding-name encoding => name of the
encoding

• stream-encoding stream => encoding of the
stream

• list-encodings => returns a list of the
encodings supported by this implementation

• encoding-name encoding => name of the
encoding

• stream-encoding stream => encoding of the
stream

CLforJavaCLforJava

SummarySummary

CLforJavaCLforJava

Unicode
Integration Implications

Unicode
Integration Implications

• Goes beyond just adding some characters

• Pervasive effects in major subsystems

• Characters, Strings

• Reader, Printer

• Character I/O

• Sorting, comparisons

• Goes beyond just adding some characters

• Pervasive effects in major subsystems

• Characters, Strings

• Reader, Printer

• Character I/O

• Sorting, comparisons

CLforJavaCLforJava

Unicode ImplicationsUnicode Implications
• It’s so complex an issue...

• Small differences in implementation can
disrupt portability

• What to do?
• Update the Common Lisp standard

• Give it a name - How about...?

• It’s so complex an issue...

• Small differences in implementation can
disrupt portability

• What to do?
• Update the Common Lisp standard

• Give it a name - How about...?

Common Lisp 2006Common Lisp 2006Common Lisp 2006

☠ Optimist! ☢☠☠ OptimistOptimist! ! ☢☢

CLforJavaCLforJava

A Demo!A Demo!

CLforJavaCLforJava

There’s a Discussion
Forum

There’s a Discussion
Forum

• http://clforjava.cs.cofc.edu/forum/

• Go to the “Dealing with Unicode” board

• There’s even a voting system built in

• http://clforjava.cs.cofc.edu/forum/

• Go to the “Dealing with Unicode” board

• There’s even a voting system built in

CLforJavaCLforJava

Q & AQ & A

	Unicode 4.0 In Common LispAdoption of Unicode In CLforJava
	ASCII Legacy
	Lisp Response
	Pretty Good For Its Time
	The Rest of the World’s Response
	20 Years Later
	Unicode 4 in Brief
	Nature of Characters
	Nature of Characters
	Encoding
	Composition / Normalization
	Collation
	Bi-directional Algorithm
	Line Break Algorithm
	Implies Pervasive Changes to Several Lisp Components
	CLforJava Implementation
	CLforJava Project
	Character Types
	Character Naming
	Character Naming in Java
	Loading Character Database
	Character I/O Streams
	Other CLs and Unicode
	Comparison Table
	The Highlights
	Proposal for Unicode in the Common Lisp Standard
	Components of the Proposal
	Characters
	Characters - Types
	Characters - Naming
	Characters - Properties
	Characters - Modified Fns
	Characters - Modified Fns
	Characters - New Fns
	Strings
	Strings - Types
	Strings - Encoding
	Strings -Modified Fns
	Strings - New Fns
	The Reader
	Reader - The Basics
	Reader - Read Macros
	Reader - Numbers
	The Printer
	Printer - *Print-Escape*
	Printer - *Print-Escape*
	Pretty Printer
	Character I/O
	Character I/O - Types
	Character I/O - Modified Fns
	Character I/O - New Fns
	Summary
	Unicode Integration Implications
	Unicode Implications
	A Demo!
	There’s a Discussion Forum
	Q & A

