ß-arrestins in GPCR Desensitization

How Lisp Will Save the World

15,596,125 abstracts

Cyanobacteria

http://www.anselm.edu/homepage/jpitocch/genbios/27-11x1-Cyanobacteria.jpg

CH SITE MAP PI	ubMed All Databases	Н	uman Geno	me GenBank	Map Viewer	BLA		
Search across databases cyanobacteria GO GLEAR Help								
8749 🛞 Abstra	led: biomedical literature citations and acts	?	57 関	Books: online books		?		
2371 🕎 PubM	led Central: free, full text journal articles	?	2 🕏	OMIM: online Mendelian Inheritance in Man				
			14 👹	Site Search: NCBI web and FTP	sites	?		
			-					
11687 💦 Nu	cleotide: sequence database (GenBank)	?	none 🤗	UniGene: gene-oriented cluster sequences	s of transcript	?		
103757 🙀 Pr	otein: sequence database	?	38 💽	CDD: conserved protein domain	database	?		
42 🕕 Ge	nome: whole genome sequences	?	1096 🤣	3D Domains: domains from Ent	rez Structure	?		
199 🔁 Str	ructure: three-dimensional macromolecular uctures	?	none 🌔	UniSTS: markers and mapping	data	?		
1 🔿 Ta	xonomy: organisms in GenBank	?	94 😶	PopSet: population study data s	ets	?		
none 🝈 SN	P: single nucleotide polymorphism	?	none 🌰	GEO Profiles: expression and n abundance profiles	nolecular	?		
28400 🚺 Ge	ne: gene-centered information	?	none 🕮	GEO DataSets: experimental se	ets of GEO data	?		
6 🜐 Ho	moloGene: eukaryotic homology groups	?	none 📳	Cancer Chromosomes: cytoge	enetic databases	?		
none 📀 Pu	bChem Compound: small molecule chemical uctures	?	none 📝	PubChem BioAssay: bioactivity chemical substances	y screens of	?		
none 🕕 Pu	bChem Substance: chemical substances reened for bioactivity	?	none 💽	GENSAT: gene expression atlas nervous system	of mouse central	?		
34 🛃 Ge	nome Project: genome project information	?						

Prochlorococcus

Tools for Thought

Equations governing cyclin-dependent kinases Notes $\frac{d}{dt}[Cln2] = (k'_{n,n2} + k''_{n,n2}[SBF]) \cdot mass - k_{n,n2}[Cln2]$ $\frac{d}{dt}[Clb2]_{T} = (k'_{a,b2} + k''_{a,b2}[Mcm1]) \cdot mass - V_{d,b2}[Clb2]_{T}, V_{d,b2} = k'_{d,b2}[(Hct1]_{T} - [Hct1]) + k''_{d,b2}[Hct1] + k''_{d,b2}[Cdc20]$ $\frac{d}{dt} [Clb5]_{tr} = (k'_{s,b5} + k''_{s,b5} [MBF]) \cdot mass = V_{d,b5} \cdot [Clb5]_{tr} V_{d,b5} = k'_{d,b5} + k''_{d,b5} [Cdc20]$ а $[Bck2] = [Bck2]^{\circ} \cdot mass,$ $[Cln3]^{*} = [Cln3]_{mass} \frac{D_{u3} \cdot mass}{L_{a} + D_{a} \cdot mass}$ $[Clb2]_{T} = [Clb2] + [Clb2/Sic1], [Clb5]_{T} = [Clb5] + [Clb5/Sic1]$ $[Sic1]_{T} = [Sic1] + [Clb2/Sic1] + [Clb5/Sic1]$ Equations governing the inhibitor of Clb-dependent kinases $\frac{d}{dt}[Sic1]_{T} = k_{s,c1}' + k_{s,c1}'[Swi5] - \left(k_{cl,c1} + \frac{V_{cl,c1}}{I_{cr,c1} + [Sic1]_{T}}\right) \cdot [Sic1]_{T}$ ь $\frac{d}{dt} [Clb2/Sic1] = k_{a,b2} [Clb2] \cdot [Sic1] = \left(k_{a,b2} + V_{a,b2} + k_{al,c1} + \frac{V_{al,c1}}{L_{trad} + [Sic1]_{tr}}\right) \cdot [Clb2/Sic1]$ $\frac{\mathrm{d}}{\mathrm{dt}} [\mathrm{Clb5/Sic1}] = k_{\mathrm{m,b5}} [\mathrm{Clb5}] \cdot [\mathrm{Sic1}] = \left(k_{\mathrm{d,b5}} + V_{\mathrm{d,b5}} + k_{\mathrm{dl,c1}} + \frac{V_{\mathrm{dl,c1}}}{L_{\mathrm{Track}} + \mathrm{ISic1L}}\right) \cdot [\mathrm{Clb5/Sic1}]$ $V_{d2,c1} = k_{d2,c1}(e_{c1,c2}[Cln3]^* + e_{c1,b2}[Bck2] + [Cln2] + e_{c1,b2}[Clb5] + e_{c1,b2}[Clb2])$ Equations governing the Clb degradation machinery $\frac{d}{dt}[Cdc20]_T = (k_{s,20} + k_{s,20}^{s}[Clb2]) - k_{4,20}[Cdc20]_T$ $\frac{d}{dt}[Cdc20] = k_{a,30}[Cdc20]_{T} - [Cdc20] - (V_{4,30} + k_{d,30}) \cdot [Cdc20]$ $V_{i,20} = \left\{ \begin{array}{ll} k_{i,20}', & \text{for END}_{}M + 12 \text{ min} < t < \text{START}_{}S \\ k_{i,20}'', & \text{for START}_{}S < t < \text{END}_{}M \end{array} \right.$ С $\frac{d}{dt}[Hct1] = \frac{(k'_{n,11} + k''_{n,11}[Cdc20]) \cdot ([Hct1]_{T} - [Hct1])}{J_{n,1} + [Hct1]_{T} - [Hct1]} = \frac{V_{i,11}[Hct1]}{J_{i,1} + [Hct1]}$ $V_{i,n} = k_{i,n}^r + k_{i,n}^\sigma ([Cln3]^* + e_{i,n,n2}[Cln2] + e_{i,n,n2}[Clb5] + e_{i,n,n2}[Clb2])$ Equations for growth, DNA synthesis, budding and spindle formation $\frac{d}{dt}$ mass = $\mu \cdot \text{mass}, \frac{d}{dt}[\text{ORI}] = k_{s,on}([\text{Clb5}] + e_{on,bi}[\text{Clb2}]) - k_{d,on}[\text{ORI}]$ d $\frac{d}{dt}[BUD] = k_{a,bud}[Cln2] + [Cln3]^* + e_{bud,bd}[Clb5] = k_{d,bud}[BUD], \frac{d}{dt}[SPN] = k_{a,spn} \frac{[Clb2]}{I_{max} + [Clb2]} = k_{d,spn}[SPN]$ Equations governing transcription factors е $[SBF] = [MBF] = G(V_{a,abf}, k'_{1,abf} + k''_{1,abf}[Clb2], J_{a,abf}, J_{1,abf}), V_{a,abf} = k_{a,abf}([Cln2] + e_{abf(n3)}([Cln3]^{*} + [Bck2]) + e_{abf(n3)}[Clb5]), J_{a,abf} = k_{a,abf}([Cln2] + e_{abf(n3)}([Cln3]^{*} + [Bck2]) + e_{abf(n3)}([Cln3]^{*}), J_{a,abf} = k_{a,abf}([Cln3]^{*}), J_{a,abf} = k_{a,abf}([Cln3]^{*})$ $[Mem1] = G(k_{n,mem}[Clb2], k_{i,mem}, J_{n,mem}, J_{i,mem}), [Swi5] = G(k_{n,mem}[Cdc20], k'_{i,mem} + k''_{i,mem}[Clb2], J_{n,mem}, J_{i,mem}), [Swi5] = G(k_{n,mem}[Cdc20], k''_{i,mem} + k''_{i,mem}[Clb2], J_{i,mem}, J_{i,mem}), [Swi5] = G(k_{n,mem}[Cdc20], k''_{i,mem} + k''_{i,mem}[Clb2], J_{i,mem}, J_{i,mem}), [Swi5] = G(k_{n,mem}[Cdc20], k''_{i,mem} + k''_{i,mem}[Cdc20], k''_{i,mem}[Cdc20], k''_{i,mem}[Cdc20], k''_{i,mem}[Cdc20], k''_{i,mem}[Cdc20], k''_{i,mem}[Cdc20], k''_{i,mem}[Cdc20], k''_{i,mem}[Cdc20], k''_{i,mem}[Cdc20], k''_{i,mem}[C$

Symbols, V = rate functions, k = rate constant, J = Michaelis constant. Subscripts, s = synthesis, d = degradation, a = activation, i = inactivation as = association. di = dissociation. T = total

Not enough data

Bio-SPICE analysis of key switches in sporulation network Overall sporulation network: B. subtilis - common across mutants Source: Bio-SPICE projects at LBNL (PI: Adam Arkin)

Not enough data

Can't do "operating logics"

ß-arrestins in GPCR Desensitization

Not enough data

Can't do "operating logics"

Not expressive enough

Parts Processes Dynamics Operating Logic

Not Just for Messages

RNA is a versatile molecule. In its most familiar role, RNA acts as an intermediary, carrying genetic information from the DNA to the machinery of protein synthesis. RNA also plays more active roles, performing many of the catalytic and recognition functions normally reserved for proteins. In fact, most of the RNA in cells is found in ribosomes--our protein-synthesizing machines--and the transfer RNA molecules used to add each new amino acid to growing proteins. In addition, countless small RNA molecules are involved in regulating, processing and disposing of the constant traffic of messenger RNA. The enzyme RNA polymerase carries the weighty responsibility of creating all of these different RNA molecules.

The RNA Factory

RNA polymerase is a huge factory with many moving parts. The one shown here, from PDB entry <u>li6h</u>, is from yeast cells. It is composed of a dozen different proteins. Together, they form a machine that surrounds DNA strands, unwinds them, and builds an RNA strand based on the information held inside the DNA. Once the enzyme gets started, RNA polymerase marches confidently along the DNA copying RNA strands thousands of nucleotides long.

Accuracy

As you might expect, RNA polymerase needs to be accurate in its copying of genetic information. To

improve its accuracy, is designed to be able tends to hover around to remove them. This removed, but this is a about once per RNA

RNA polymerase is a huge factory with many moving parts. The one shown here, from PDB entry <u>1i6h</u>, is from yeast cells. It is composed of a dozen different proteins. Together, they form a machine that surrounds DNA strands, unwinds them, and builds an RNA strand based on the information held inside the DNA. Once the enzyme gets started, RNA polymerase marches confidently along the DNA copying RNA strands thousands of nucleotides long.

es ac

ß-arrestins in GPCR Desensitization

www.biocarta.com

С

- 🕨 Ca++/ Calmodulin-dependent Protein Kinase Activation 🖽 💹
- Cadmium induces DNA synthesis and proliferation in macrophages H M
- 🕨 Calcium Signaling by HBx of Hepatitis B virus 🖽 M
- Cardiac Protection Against ROS H
- CARM1 and Regulation of the Estrogen Receptor H
- 🕨 Caspase Cascade in Apoptosis 田 🕅
- Catabolic pathway for asparagine and asparate
- > Catabolic pathways for alanine, glycine, serine, cysteine, tryptophan, and threonine
- 🕨 Catabolic Pathways for Arginine , Histidine, Glutamate, Glutamine, and Proline 🔣 M
- 🕨 Catabolic Pathways for Methionine, Isoleucine, Threonine and Valine 🖽 M
- 🕨 CBL mediated ligand-induced downregulation of EGF receptors 🖽 M
- 🕨 CCR3 signaling in Eosinophils 🔣 💹
- 🕨 CD40L Signaling Pathway 🔣 M
- 🕨 cdc25 and chk1 Regulatory Pathway in response to DNA damage 用 M
- CDK Regulation of DNA Replication H M
- 🕨 Cell Cycle: G1/S Check Point 🔣 M
- 🕨 Cell Cycle: G2/M Checkpoint 🔣 M
- 🕨 Cell to Cell Adhesion Signaling 🔣 M
- 🕨 Cells and Molecules involved in local acute inflammatory response 🖽
- 🕨 Ceramide Signaling Pathway 🔣 M
- 🕨 Chaperones modulate interferon Signaling Pathway 🗄
- ChREBP regulation by carbohydrates and cAMP H M
- 🕨 Chromatin Remodeling by hSWI/SNF ATP-dependent Complexes 田 💹
- 🕨 Circadian Rhythms 🔣 🕅
- 🕨 Classical Complement Pathway 🔣 💹
- Comparison of Beta oxidation in mitochondria and peroxisomes and glyoxysomes
- 🕨 Complement Pathway 🔣 🕅
- 🕨 Control of Gene Expression by Vitamin D Receptor 🖽 M
- 🕨 Control of skeletal myogenesis by HDAC & calcium/calmodulin-dependent kinase (CaMK) 🖽 💹
- 🕨 Corticosteroids and cardioprotection 🔣 💹
- 🕨 CTCF: First Multivalent Nuclear Factor H 💹
- 🕨 CTL mediated immune response against target cells 田 🕅
- 🕨 CXCR4 Signaling Pathway 🔣 M
- 🕨 Cyclin E Destruction Pathway 🔣 M
- 🕨 Cycling of Ran in nucleocytoplasmic transport 🔣 💹
- 🕨 Cyclins and Cell Cycle Regulation 🖽 M
- 🕨 Cystic fibrosis transmembrane conductance regulator and beta 2 adrenergic receptor pathway 🔣 💹
- 🕨 Cytokine Network 🔣 M
- 🕨 Cytokines and Inflammatory Response 🖽 💹

Eukaryotic protein translation

Action of PPARa, PPARb(d) and PPARg and effects on gene expression

Granzyme A mediated Apoptosis Pathway

Multi-step Regulation of Transcription by Pitx2

Cell Cycle: G2/M Checkpoint

p53 Signaling Pathway

Double Stranded RNA Induced Gene Expression

Bio-SPICE analysis of key switches in sporulation network Overall sporulation network: B. subtilis - common across mutants Source: Bio-SPICE projects at LBNL (PI: Adam Arkin)

Photosynthesis (light reactions)

PhotoSynthesis (light reactions)

http://www.bio.ic.ac.uk/research/barber/photosystemII.html

How Lisp Will Save the World

Biological models are complex webs of parts, processes, dynamics, and operating logics.

How Lisp Will Save the World

Biological models are complex webs of parts, processes, dynamics, and operating logics.

The expressions in these models range over both qualitative and quantitative value spaces.

Prochlorococcus

ß-arrestins in GPCR Desensitization

Causal/Regulatory Model

Shrager, et al. (2002)

ion-channel example:

B-USER 20 > cell-a.membrane.(contains ion-channel) (new) ion-channel.(in cell-a.membrane) :#= [reactant ion-c ion-channel.(in cell-a.membrane) :#= [reactant ion-channel

```
B-USER 21 > cell-a.inner.(contains ion)
```

```
(new) ion.(in cell-a.inner) :#= [reactant ion cell-a.inner
```

```
(new) ion.(in dish) :#= [reactant ion dish]
```

```
(new) transport-rxn.rev.1.(in cell-a.membrane) :#= [reacti
```

```
(new) transport-rxn.fwd.1.(in cell-a.membrane) :#= [reacti
```

```
ion.(in cell-a.inner) :#= [reactant ion cell-a.inner]
```

B-USER 22 > cell-b.membrane.(contains ion-channel) (new) ion-channel.(in cell-b.membrane) :#= [reactant ion-c (new) ion.(in cell-b.inner) :#= [reactant ion cell-b.inner (new) transport-rxn.fwd.1.(in cell-b.membrane) :#= [reacti (new) transport-rxn.rev.1.(in cell-b.membrane) :#= [reacti ion-channel.(in cell-b.membrane) :#= [reactant ion-channel

"little b", aneil mallavarapu

Predicted and observed levels of average gene expression over a 24-hour period.

ß-arrestins in GPCR Desensitization

How Lisp Will Save the World

Biological models are complex webs of parts, processes, dynamics, and operating logics.

The expressions in these models range over both qualitative and quantitative value spaces.

Prochlorococcus

Biologists base their theories about what something does upon what *other* biologists think some other things that look similar do.

Homology of hexokinase across species:

		660	670	680	690	700
yeast	651 DIPN-		PMLQKQ	TKEN-IHIE	UAL I NOTT	GTLUAS-WYT
Ā. thaliana	651 SIEEF	A <mark>W</mark> G-Q <u>DVU</u>	GALNKAL .	EBVG-LOMRT	AALUNDTV	GTLAGGRYY-
human	651 <mark>FKATDO</mark>	:V-GH DVU	/TLLRDAT	KRREEFDLDV	UAUUNDTU	GTMMTCAY-E
mouse	651 <mark>FKATDO</mark>	:U-GH DUF	TLLRDAV	KRREEFDLDV	<mark>UAUUNDTU</mark>	<u>GTMMTCAY-E</u>
S. masoni	651 S DG-	- <mark>UEGH</mark> N <mark>U</mark> F	AE <mark>LL</mark> QTEL	DKREENU	KC <mark>UAUUNDTU</mark>	<u>GTLA</u> SCAL-E
		_7 <u>1</u> 0	720	730	740	750
yeast	701 OP ETKI	1801F GTC	SUNGRYYD -	VCSDIEKLQG	KLSDDI PPSA	PMAINCEYGS
A. thaliana	701 N DUUR	AAV <mark>UL</mark> BOO	S <mark>UNAAY</mark> UE	RATAIP	- - L <u>2KS6</u>	EMUT NMENGN
human	701 E TOE	JGLIV GTO	SINACYME -	EMKNUE	-MUEIGD006	QMCINMEWGA
mouse	701 E SUL	GLIV GTO	(SINACYME			<u>QMC I NMENGA</u>
S. masoni	701 <u>08</u> KBB	JGLIV GTO		DSSK <mark>#=</mark>		EUUINTEUGH
		760	770	. 365 - 3 66	- 790 	008
yeast	751 - USE	00- <u>P</u> P	- ST KY UT	I E SPRES		YYLGE I LRLH
H. thallana	751				EUILEKIISG	MYLGETLRRU
human	751 FGUNG		RIHY HL		KURYEKMI SG	MYLGE I URN I
mouse	751 - GUNG -		BILFUKU		KURFEKMISG	
S. masoni	– 751 <u>ag</u> ek <u>ø</u> e	:LU S W	<u>RIUFUK</u> S	MULU-SEHEC	<u>RULYernvsc</u>	

www.bio.davidson.edu/Biology

High-Resolution Solution of a Potassium Channel

www.pdb.org

High-Resolution Solution of a Potassium Channel

www.pdb.org

Biologists base their theories about what something does upon what *other* biologists think some other things that look similar do.

Cyanobacteria

http://www.anselm.edu/homepage/jpitocch/genbios/27-11x1-Cyanobacteria.jpg

The Fiction of Function

Gene Ontology

From GenNav, the NIH Gene Ontology Browser

How Lisp Will Save the World

Biological models are complex webs of parts, processes, dynamics, and operating logics.

The expressions in these models range over both qualitative and quantitative value spaces.

Creating such models requires being able to compare and combine submodels.

How Lisp Will Save the World

Biological models are complex webs of parts, processes, dynamics, and operating logics.

The expressions in these models range over both qualitative and quantitative value spaces.

Creating such models requires being able to compare and combine submodels.

Each of these Demands Symbolic Computing

Prochlorococcus

Photosynthesis: The "Turing Test" of biological knowledge representation

PhotoSynthesis (light reactions)

Where Prochlorococcus Go; The BioSphere Follows!

Chlorophyll loading (NASA)